Three - Dimensional Propagation Algorithm
نویسنده
چکیده
Depth image based rendering (DIBR) is the process of synthesizing new “virtual” views from a set of “real” views which include color and depth images. Because of its photorealism and less stringent computational requirement, DIBR has many applications such as 3D TV, remote reality, and video conferencing, and has become one of the hot research areas in visual computing in recent years. Since the general purpose graphics processing unit (GPGPU) is an ideal computing platform for image rendering, we consciously develop a novel and necessary image processing algorithm suitable for GPGPU by exploiting massive parallelism. The proposed 3D propagation algorithm for DIBR combines images from multiple color and depth cameras at arbitrary positions in 3D space and efficiently renders novel images at arbitrary virtual views by propagating all available depth information from depth cameras to color cameras, and then all available depth and color information from the color cameras to the virtual views. Furthermore, we consider the case when only low resolution depth images are obtained. A novel depth filling and enhancement technique for enhancing depth image quality using high resolution color images is proposed and significantly improves the rendering quality. Finally, the paper also describes the abundant but irregular parallelism of our algorithm and outlines a mapping onto massively parallel architectures such as GPGPUs.
منابع مشابه
Three Dimensional Numerical Simulation of Tsunami Generation and Propagation Due to Makran Subduction and run-up on Chabahar Bay and Makran Coasts
Makran subduction located at the northwest of the Indian Ocean nearby the southern coast of Iran and Pakistan. Makran subduction is the source of tsunamis that threaten southern coast of Iran. In this article, generation and propagation of 1945’s tsunami initiated by Makran subduction is simulated. For the three dimensional generation of the wave, advanced algorithm of Okada is adopted. The CFD...
متن کاملDynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation
This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...
متن کاملکاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان
With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...
متن کاملA General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts
In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...
متن کاملA General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts
In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...
متن کاملCell Deformation Modeling Under External Force Using Artificial Neural Network
Embryogenesis, regeneration and cell differentiation in microbiological entities are influenced by mechanical forces. Therefore, development of mechanical properties of these materials is important. Neural network technique is a useful method which can be used to obtain cell deformation by the means of force-geometric deformation data or vice versa. Prior to insertion in the needle injection pr...
متن کامل